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1 Motivation

In physics or more generally in science many quantities are not just numbers,
but they have both a magnitude and a direction. For example, saying �the
library is 0.5 km away� gives a scalar distance (magnitude), but it does not tell
us which direction to the library. To fully specify the location of the library, we
need a vector, which provides both magnitude (scalar direction) and direction.
Some other examples of vectors are force, velocity, acceleration, magnetic, and
electrical �elds.

2 De�nition of Vectors

A vector is speci�ed by one for each dimension, in two dimensions a vector
has two elements, in three dimensions a vector has three elements, and a N -
dimensional vector has N entries. To be speci�c in two dimensions we write a
vector as an ordered pair:

−→
T =

(
t1
t2

)
where t1 represents displacement along the horizontal (x-axis, −→e 1); t2 represents
displacement along the vertical (y-axis, −→e 2). These two numbers de�ne any
direction in the plane, much like points on a compass. Moreover, with this
interpretation we can provide an alternative representation of vectors:

−→
T = t1 · −→e 1 + t2 · −→e 2

that emphasizes the components as well as the directions. In three dimensions,

a vector has three components:

−→
T =

 t1
t2
t3


−→
T = t1 · −→e 1 + t2 · −→e 2 + t3 · −→e 3
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where now t3 accounts for motion along a third z-direction, giving us full spatial

positioning. And for an N -dimensional vector

T =

 t1
...
tN


−→
T = t1 · −→e 1 + · · ·+ tN · −→e N

3 Basis Vectors

If a set of directional vectors, {−→e 1, · · · ,−→e N}, allows to identify any point in
the corresponding space, this set is called a basis. For example, the set,

{
−→e 1 =

(
1
0

)
,−→e 2 =

(
0
1

)}
−→
T = t1 ·

(
1
0

)
+ t2 ·

(
0
1

)
allows to reach all points in the two-dimensional plane, and the two vectors

form a basis. On the other hand,

{
−→e 1 =

(
1
1

)
,−→e 2 =

(
2
2

)}
−→
T = t1 ·

(
1
1

)
+ t2 ·

(
2
2

)
do not form a basis, since the two vectors point in the same direction. We notice

in the �rst example, that the two directional vectors are orthogonal. However,
this feature is not a prerequisite for vectors to form a basis:

{
−→e 1 =

(
1
0

)
,−→e 2 =

(
1
1

)}
−→
T = t1 ·

(
1
0

)
+ t2 ·

(
1
1

)
However, orthogonal basis vectors simplify often the math and usually it is

not a restriction generality to assume a n orthogonal set of vectors. Note, that
even if we start with a non-orthogonal set, we can always transform this set
(uniquely) into an orthogonal set.
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4 Vector Algebra

Vectors can be manipulated in several ways, they can be added and subtracted
and multiplied by scalars to give another vector

T⃗1 =

(
T11

T21

)
; T⃗2 =

(
T12

T22

)
−→
T ′ = s ·

−→
T 1 + t ·

−→
T 2

−→
T ′ =

(
sT11 + tT12

sT21 + tT22

)
and here is a speci�c example:

T⃗1 =

(
2
−4

)
; T⃗2 =

(
1
1

)
s = 2, t = −2

−→
T ′ =

(
2 ∗ 2− 2 ∗ 1

2 ∗ (−4)− 2 ∗ 1

)
=

(
2

−10

)

5 Angular Representation of 2D Vectors

If we think about the vectors for a moment, we realize that it must be possible
to write a vector in terms a suitably chosen angle, θ, by convention chosen as

counterclockwise from the x-axis, and its magnitude,
−→
|T |. Using the de�nitions

of sin/cos (for a review, see �Trigonometry Primer�)

T1 = T · cos(θ)
T2 = T · sin(θ)

where T =
−→
|T | is the magnitude of the vector. For example:

θ = 5π/4 = 225o;T = 3

T1 = 3 ∗ (−0.707) = −2.121

T2 = 3 ∗ (−0.707) = −2.121

Let's complete the cycle and re-compute angle and magnitude from the polar

representation. Here we have to be careful, since the angle may not be uniquely
de�ned. In our example, we could compute
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tan (θ) =
T2

T1
= 1

θ = tan−1

(
T2

T1

)
= π/4 = 45o

Thus, computing the component representation from the polar representation

is straightforward and unique, the same is not true for computing the polar
representation from the component representation and we have to be careful to
pick the correct angle. The tan-function is π-periodic, and adding 180o to the
computed angle leads to the original angle.

6 Dot-Product

The dot-product combines to vectors, −→a and
−→
b , to form a scalar. More

precisely, the dot-product is de�ned as the projection of the second vector onto
the �rst vector. This must always be possible, consider the 2D case: the two
vectors de�ne a unique plane, and within this plane exists a unique projection
of one vector onto the other vector.

−→a ·
−→
b

= a · b · cos (θ)
= a1b1 + a2b2

where, a and b, are the magnitude of the two vectors,

−→a =

(
a1
a2

)
;
−→
b =

(
b1
b2

)
and θ is the angle enclosed between the two vectors. Here is an example

−→a =

(
1
0

)
;
−→
b =

(
1
1

)
a = 1; b =

√
2

1 · 1 + 0 · 1 = 1 ·
√
2 · cos (θ)

cos (θ) =
1√
2

θ = π/4 = 45o

which is the expected angle. And for the dot-product in N -dimension

−→a ·
−→
b

= a · b · cos (θ)

=

N∑
i=1

aibi

4



an example where you will �nd the dot product in physics is when you

compute the work done on or by a process.

7 Vector-Product

The vector product, −→c = −→a ×
−→
b takes two vectors, −→a and

−→
b , and creates a

new vector, −→c , that is perpendicular to the plane spanned by the two input
vectors

−→a =

 a1
a2
a3

 ;
−→
b =

 b1
b2
b3


−→c

= −→a ×
−→
b

=

 a2b3 − a3b2
− (a1b3 − a3b1)
a1b2 − a2b1


= a · b · sin (θ)

and we �nd that the vector product changes sign if the two input is exchanged

−→a ×
−→
b = −

−→
b ×−→a

and here is an example

−→a =

 1
0
0

 ;
−→
b =

 0
2
0


−→a ×

−→
b =

 0
0
2


|−→a ×

−→
b | = 2

and the magnitude of the cross-product is equivalent to the parallelogram area

spanned by the two input vectors. More generally, the magnitude of the cross
product is

|−→c | = |−→a ×
−→
b |

= a · b · sin (θ)

In physics you will �nd the vector when you compute angular momentum,

torque and other quantities.
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8 Exercises

1. Compute −→c = 2 · −→a − 5 ·
−→
b , with −→a =

(
−2
3

)
, and

−→
b =

(
1
−1

)
.

2. Compute the component representation of a 2-dimensional vector with
magnitude 4 and an angle of 190o, measured counterclockwise from the
x-axis.

3. Compute the polar representation of the vector, −→a =

(
2
2

)
.

4. Compute the polar representation of the vector, −→a =

(
−3
−1

)
.

5. Compute the dot product for the two vectors, −→a =

(
−2
3

)
, and

−→
b =(

1
−1

)
, using both de�nitions of the dot product and show that the

results are identical.

6. Compute the vector product, −→a ×
−→
b , for the two vectors, −→a =

 1
0
0

,

and
−→
b =

 1
1
0

, and verify that the magnitude of the resulting vector

agrees with the area de�nition.

7. Compute the area spanned by the parallelogram spanned by the two vec-

tors −→a =

 1
1
1

, and
−→
b =

 1
−2
3

.
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