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1 Motivation

Quantum dynamics is central to the understanding how quantum systems evolve
in time and provides a direct link between a system's energy structure and its
temporal behavior. By studying the time-dependent Schrödinger equation and
its equivalent formulations, you'll see how interference, tunneling, and entan-
glement naturally arise, generating insights that range from interpreting atomic
spectra and modeling molecular reactions to enabling coherent control in quan-
tum technologies. In summary, quantum dynamics provides an essential foun-
dation for both fundamental research and transformative applications.

2 Time Dependent Schroedinger Equation

Consider a quantum system described by a state vector | ψ(t)⟩. In the position
representation, the wavefunction is

ψ(x, t) = ⟨x | ψ(t)⟩.

We de�ne an operator, Û , that describes the evolution of the system as it evolves
from t to ∆t

|ψ(x, t+∆t) >= Û (∆t) |ψ(t) >

We also require that the wavefunction remains normalized as the system evolves

1 =< ψ(t+∆t)|ψ(t+∆t) >

=< ψ(t)|Û+Û |ψ(t) >

and we conclude that the time evolution operator, U , is unitary

Û+Û = 1

we de�ne the time evolution operator as

Û (∆t) = 1− i

ℏ
Ĥ∆t
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and we write

Û (t+∆t) = Û (∆t) Û (t)

=

(
1− i

ℏ
Ĥ∆t

)
Û (t)

we rearrange this equation and obtain:

iℏ
d

dt
Û

= lim
∆t→0

Û(t+∆t)− Û(t)

∆t

= ĤÛ

similarly, we can obtain an equation for the time evolution of the initial state

iℏ
d

dt
|ψ(t) >

= lim
∆t→0

|ψ(t+∆t) > −|ψ(t) >
∆t

= lim
∆t→0

Û(t+∆t)− Û(t)

∆t
|ψ(t0) >

= ĤÛ |ψ(t0) >
= Ĥ|ψ(t) >

and combining the �rst and last equation, we obtain the time-dependent Schroedinger
equation

iℏ
d

dt
|ψ(t) >= Ĥ|ψ(t) >

or after projecting into position space, we obtain the more familiar looking
time-dependent Schroedinger equation

iℏ
d

dt
ψ(x, t) = H(x, t)ψ(x, t)

we can provide a closed form for the time evolution operator

iℏ
d

dt
Û = ĤÛ

Û (t) = exp

(
− i

ℏ

∫ t

Ĥ (t) dt

)
in other words, time evolution has the form of a time-dependent phase factor.
However, note, that time evolution may lead to emerging relative phases (unlike
a global phase, that is immaterial in quantum mechanics). The time evolution
operator simpli�es signi�cantly if the operator, Ĥ, is time independent, as will
see in the next section.
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3 Time Independent Schroedinger Equation

If the operator, Ĥ, is time independent the form of the time evolution operator
simpli�es to

Û (t) = exp

(
− i

ℏ
Ĥt

)
an alternative to derive this same formula is to realize that we apply the time
evolution operator N times such that

∆t =
t

N

Û (t) = Û (∆t) Û (∆t) · · · Û (∆t)

= U (∆t)
N

=

(
1− i

ℏ
Ĥ

t

N

)N

= exp

(
− i

ℏ
Ĥt

)
exactly the same result as before, and again highlighting that time evolution in
quantum mechanics is expressed as a change in relative phases

|ψ(t) >= exp

(
− i

ℏ
Ĥt

)
|ψ(t = 0) >

We still need to clarify what the operator Ĥ represents in the context of quantum
evolution. Since the exponent has to be dimensionless, and the units of ℏ are
[energy∗s], it follows that Ĥ itself my have the unites of [energy]. Expanding on
this results from dimensional analysis, we clarify the signi�cance of Ĥfurther,
by computing how the expectation value of this operator changes with time.
Consider the case that Ĥis time independent

< ψ(t)|Ĥ|ψ(t) >
=< ψ(t = 0)|Û+ĤÛ |ψ(t = 0) >

=< ψ(t = 0)|Ĥ|ψ(t = 0) >

since
[
Ĥ, Û

]
= 0. We �nd that in this case the time average does not change.

In summary, all of these lines of evidence suggests that Ĥcan be identi�ed with
the Hamiltonian of the system, and for the average energy, corresponding to the
average Hamiltonian we have

< E >=< ψ|Ĥ|ψ >
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Let's follow this identi�cation somewhat further, and consider the (energy)
eigenstates of the system Hamiltonian

Ĥ|E >= E|E >

for which we �nd

exp

(
− i

ℏ
Ĥt

)
= exp

(
− i

ℏ
Et

)
and

|ψ(t) >= exp

(
− i

ℏ
Ĥt

)
|E >= exp

(
− i

ℏ
Et

)
|E >

and as argued above, the state simply picks up a phase as the system evolves.
However, this does not preclude a rich and varied quantum dynamics. Compare
the single state dynamics with superposition state dynamics. If we have a system
initialized in a single energy eigenstate, we �nd

|ψ(t) >= exp

(
− i

ℏ
Et

)
|E >

and the state only picks up an overall phase and remains equivalent to the
original state. Now consider a system prepared in a superposition of energy
states

|ψ(t = 0) >= a1|E1 > +a2|E2 >

and the state evolves following

|ψ(t) >= exp

(
− i

ℏ
Ĥt

)
|ψ(t = 0) >

= exp

(
− i

ℏ
Ĥt

)
(a1|E1 > +a2|E2 >)

= exp

(
− i

ℏ
Ĥt

)
a1|E1 > +exp

(
− i

ℏ
Ĥt

)
a2|E2 >

= exp

(
− i

ℏ
E1t

)
a1|E1 > +exp

(
− i

ℏ
E2t

)
a2|E2 >

and the relative phases do not cancel (unless the energies of the two states are
the same, E1 = E2), leading to non-trivial quantum dynamics.

4 Quantum Dynamics - Frameworks

In quantum mechanics time evolution can be described in three equivalent but
complementary frameworks: in the Schrödinger picture, state vectors evolve in
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time; in the Heisenberg picture, all time-dependence is carried by the operators,
making symmetries and conservation laws especially transparent; and in the In-
teraction picture, one splits the Hamiltonian into a �free� part�whose evolution
de�nes a rotating reference frame�and an �interaction� part, which is treated
against that background. Understanding these three pictures encompasses ev-
erything from direct wavefunction dynamics to operator algebra to systematic
perturbation theory in quantum �eld theory.

4.1 Schroedinger Picture

Core Idea. The quantum state carries all time dependence, while operators rep-
resenting observables remain �xed (unless they have explicit time dependence).
A state vector, |ψS (t) >, evolves according to the time-dependent Schrödinger
equation

iℏ
∂

∂t
|ψS (t) >= Ĥ|ψS (t) >

The formal solution is

|ψS (t) >= U (t, t0) |ψS (t) >

U (t, t0) = exp

(
− i

ℏ

∫ t

t0

Ĥ (t) dt

)
If the Hamiltonian does not explicitly depend on time the equation for the for
evolution operator simpli�es to

U (t, t0) = exp

(
− i

ℏ
Ĥ (t− t0)

)
Operator Behavior. Any operator (with no explicit time dependence) is constant

ÂS (t) = ÂS (t0) = ÂS

Pros & Cons:

� Advantage: Directly connects to wavefunction dynamics; intuitive when
solving simple time-dependent potentials.

� Limitation: For many-body or �eld theories, tracking the evolution of a
high-dimensional wavefunction becomes increasingly challenging.

4.2 Heisenberg Picture

Core Idea. Operators evolve in time, absorbing the full dynamics, while state
vectors remain constant (often taken at the initial time). State De�nition.
Choose

|ψH >= |ψS (t0) >
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independent of time, t. We recognize that operator averages depend on the
system we are describing, not how we are describing the system. We start
from the evolution of an operator average in the Schroedinger picture using this
expectation

< A >H=< A >S

=< ψS (t) |ÂS |ψS (t) >

=< ψS (t0) |Û+ÂSÛ |ψS (t0) >

=< ψH |ÂH |ψH >

and we identify

AH = Û+ÂSÛ

Di�erentiating yields the Heisenberg equation of motion for operators:

iℏ
∂

∂t
ÂH (t) =

[
ÂH (t) , Ĥ

]
+ iℏ

∂

∂t
ÂS

Expectation Values. Identical to Schrödinger picture (as expected):

< A > (t) =< ψH |ÂH |ψH >=< ψS (t) |ÂS |ψS (t) >

Pros & Cons:

� Advantage: Particularly well-suited for quantum �eld theory and many-
body physics, where mode operators (creation/annihilation) evolve and
states (e.g., vacuum) stay �xed.

� Limitation: Less intuitive if one thinks in terms of wavefunction evolution;
interaction with explicitly time-dependent Hamiltonians can complicate
operator equations.

4.3 Interaction Picture

Core Idea. A hybrid approach splitting the Hamiltonian, Ĥ = Ĥ0 + V̂ (t). Ĥ0

is time independent and drives the operator evolution, while the �interaction�,
V̂ (t), drives the state evolution. This picture underpins time-dependent per-
turbation theory and quantum �eld theory. De�ne the free evolution operator

U (t, t0) = exp

(
− i

ℏ
Ĥ0 (t− t0)

)
and interaction-picture operators:
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ÂH = Û+ÂSÛ

They satisfy

iℏ
∂

∂t
ÂI (t) =

[
ÂI (t) , Ĥ0

]
Interaction-picture state:

|ψI (t) >= U+ (t, t0) |ψS (t) >

It evolves according to

iℏ
∂

∂t
|ψI (t) >= V̂I (t) |ψI (t) >

V̂I = Û0
+
V̂ (t) Û0

The formal solution for the state-evolution operator is given by the Dyson series:

|ψI (t) >= T exp
[
− i

ℏ

∫ t

t0

V̂I (t) dt

]
|ψI (t0) >

where T is time-ordering. Pros & Cons.:

� Advantage: Enables perturbative expansions in V̂ ; central to scattering
theory (S-matrix) and quantum electrodynamics.

� Limitation: Requires a clear separation of �free� vs. �interaction� parts;
less straightforward if no natural splitting exists.

Comparison of the Three Pictures
Feature Schroedinger Heisenberg Interaction

State time-dependence Yes No Yes, V̂I

Operator time-dependence No Yes Partial, Ĥ0

Utility Wave-packet dynamics,

foundational quantum mechanics

Field theory;

many-body theory

Perturbation theory;

scattering

Choose Exact or numerical solution of time-dependent

Schroedinger equation

Operator algebra;

high-dimensional problems

Time-dependent perturbation;

Feynman diagrams

5 Conclusion

Although physically equivalent, each picture o�ers unique insights:

1. Schrödinger picture appeals to our classical intuition of evolving wave-
functions and is often used in quantum-mechanics courses and numerical
simulations.
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2. Heisenberg picture shifts focus to operator dynamics, streamlining treat-
ments in quantum �eld theory and many-body physics.

3. Interaction picture is an elegant hybrid of both approaches, providing a
natural framework for perturbation theory and scattering processes.

In summary, a conceptual understanding of quantum dynamics provides you
with a versatile tool for treating advanced topics in modern physics, encom-
passing physics, chemistry, quantum technologies as well as many other current
and emerging �elds in science and engineering.

6 Exercises

Not yet, for a collection of problems in quantum dynamics check quantum me-
chanics textbooks.
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