

1 Introduction

Two of the most important single-mode optical states are (i) coherent states, which model ideal laser light as a displaced vacuum with a well-defined complex field amplitude, and (ii) squeezed vacuum states, which redistribute quantum fluctuations between conjugate quadratures while remaining minimum-uncertainty states with applications for example in interferometric noise reduction [1]. Both optical states are produced by simple exponentiated *generators*. This short primer shows, using only commutators and Taylor expansions, how the generator forms of the displacement and squeezing operators lead to explicit superpositions in the Fock (photon-number) basis [2].

2 Single-Mode Algebra

We consider one bosonic mode with annihilation (a) and creation (a^\dagger) operators satisfying the canonical commutator relations (CCR)

$$[a, a^\dagger] = 1, \quad [a, a] = [a^\dagger, a^\dagger] = 0 \quad (1)$$

and a vacuum state $|0\rangle$ defined by $a|0\rangle = 0$. The number states are

$$|n\rangle = \frac{(a^\dagger)^n}{\sqrt{n!}} |0\rangle, \quad n = 0, 1, 2, \dots \quad (2)$$

with ladder relations

$$a|n\rangle = \sqrt{n} |n-1\rangle, \quad a^\dagger|n\rangle = \sqrt{n+1} |n+1\rangle \quad (3)$$

We will use the product-rule commutator identity for operators

$$[A, BC] = [A, B]C + B[A, C] \quad (4)$$

3 Baker-Campbell-Hausdorff (BCH) Factorization

If two operators A and B commute with $[A, B]$ (equivalently: $[A, [A, B]] = [B, [A, B]] = 0$), then

$$e^{A+B} = e^A e^B e^{-\frac{1}{2}[A, B]} \quad (5)$$

a special case of the Baker–Campbell–Hausdorff theorem. (For more details on BCH and its proof see the corresponding primer and [4, 5])

4 Hadamard Lemma

The Hadamard lemma in adjoint form (see also BCH primer and [4, 5]) is

$$e^G B e^{-G} = e^{\text{ad}_G} B = \sum_{n=0}^{\infty} \frac{1}{n!} \text{ad}_G^n(B), \quad \text{ad}_G(B) \equiv [G, B] \quad (6)$$

where

$$\begin{aligned} \text{ad}_G^0(B) &= B \\ \text{ad}_G^1(B) &= [G, B] \\ \text{ad}_G^2(B) &= [G, [G, B]] \\ &\vdots \end{aligned} \quad (7)$$

are nested commutators.

5 Coherent States From The Displacement Generator

The displacement operator is defined as [3]:

$$D(\alpha) = \exp(\alpha a^\dagger - \alpha^* a), \quad \alpha \in \mathbb{C} \quad (8)$$

and the coherent state is the displaced vacuum

$$|\alpha\rangle = D(\alpha) |0\rangle \quad (9)$$

Let $A = \alpha a^\dagger$ and $B = -\alpha^* a$. Using

$$[A, B] = [\alpha a^\dagger, -\alpha^* a] = -|\alpha|^2 [a^\dagger, a] = |\alpha|^2 \quad (10)$$

which is a c -number and therefore trivially commutes with both A and B . We evaluate the operator exponential with the BCH formula (eqn. 5) and obtain the standard factorization

$$D(\alpha) = e^{-|\alpha|^2/2} e^{\alpha a^\dagger} e^{-\alpha^* a} \quad (11)$$

For completeness and use in later primers we compute $D^\dagger a^\dagger D$ from the Hadamard lemma (4). First we identify G as the adjoint of the exponent of the displacement operator D :

$$G = (\alpha a^\dagger - \alpha^* a)^\dagger = \alpha^* a - \alpha a^\dagger \quad (12)$$

and evaluating the nested commutators we obtain

$$\begin{aligned} \text{ad}_G^0(a^\dagger) &= a^\dagger \\ \text{ad}_G^1(a^\dagger) &= [G, a^\dagger] \\ &= [\alpha^* a - \alpha a^\dagger, a^\dagger] \\ &= \alpha^* \\ \text{ad}_G^2(a^\dagger) &= 0 \end{aligned} \quad (13)$$

where the last equation follows uses that any operator commutes with a number. Since only the first two terms remain, we obtain the compact final relationship:

$$D^\dagger a^\dagger D = a^\dagger + \alpha^* \quad (14)$$

5.1 Act On The Vacuum And Taylor Expand

Since $a|0\rangle = 0$, every positive power of a annihilates the vacuum, so

$$e^{-\alpha^* a}|0\rangle = \sum_{m=0}^{\infty} \frac{(-\alpha^*)^m}{m!} a^m |0\rangle = |0\rangle \quad (15)$$

Applying (11) then gives

$$|\alpha\rangle = e^{-|\alpha|^2/2} e^{\alpha a^\dagger} |0\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{n!} (a^\dagger)^n |0\rangle \quad (16)$$

Using $(a^\dagger)^n |0\rangle = \sqrt{n!} |n\rangle$ yields the Fock-basis superposition

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

(17)

6 Squeezed Vacuum From The Squeezing Generator

The single-mode squeezing operator is defined by

$$S(\zeta) = \exp\left[\frac{1}{2} (\zeta^* a^2 - \zeta(a^\dagger)^2)\right], \quad \zeta \in \mathbb{C} \quad (18)$$

and the squeezed vacuum is

$$|0; \zeta\rangle = S(\zeta) |0\rangle, \quad a|0\rangle = 0 \quad (19)$$

We parameterize ζ in polar form

$$\zeta = r e^{i\theta}, \quad r \geq 0, \quad \theta \in \mathbb{R} \quad (20)$$

6.1 Adjoint-Exponential (Hadamard Lemma) And Closed Algebra

Let

$$G \equiv \frac{1}{2} (\zeta^* a^2 - \zeta(a^\dagger)^2), \quad S(\zeta) = e^G \quad (21)$$

Using the Hadamard lemma (section 4) we compute the action of $S(\zeta)$ on the ladder operators. From the CCR (eq. 1) we find

$$[G, a] = \zeta a^\dagger, \quad [G, a^\dagger] = \zeta^* a \quad (22)$$

Repeated commutators alternate between a and a^\dagger :

$$\text{ad}_G^{2n}(a) = |\zeta|^{2n} a, \quad \text{ad}_G^{2n+1}(a) = |\zeta|^{2n} \zeta a^\dagger \quad (23)$$

with $|\zeta| = r$. Substituting (23) into (6) yields

$$\begin{aligned} S(\zeta) a S^\dagger(\zeta) &= \sum_{n=0}^{\infty} \frac{r^{2n}}{(2n)!} a + \sum_{n=0}^{\infty} \frac{r^{2n}}{(2n+1)!} \zeta a^\dagger \\ &= a \cosh r + \frac{\zeta}{r} a^\dagger \sinh r = a \cosh r + e^{i\theta} a^\dagger \sinh r \end{aligned} \quad (24)$$

Define

$$b \equiv S(\zeta) a S^\dagger(\zeta) = \mu a + \nu a^\dagger, \quad \mu = \cosh r, \quad \nu = e^{i\theta} \sinh r \quad (25)$$

so that $\nu/\mu = e^{i\theta} \tanh r$. Eqn. 25 is also called *Bogoliubov (linear canonical) transformation* of mode operators.

6.2 Vacuum Condition And Fock-Basis Recursion

Because $|0; \zeta\rangle = S(\zeta)|0\rangle$ and $a|0\rangle = 0$, we have

$$b|0; \zeta\rangle = S(\zeta) a S^\dagger(\zeta) S(\zeta)|0\rangle = S(\zeta) a|0\rangle = 0 \quad (26)$$

Equivalently,

$$(\mu a + \nu a^\dagger)|0; \zeta\rangle = 0 \quad (27)$$

Expand the state in the number basis,

$$|0; \zeta\rangle = \sum_{n=0}^{\infty} c_n |n\rangle \quad (28)$$

Using $a|n\rangle = \sqrt{n}|n-1\rangle$ and $a^\dagger|n\rangle = \sqrt{n+1}|n+1\rangle$ in (27), then collecting coefficients of $|n\rangle$, gives the recursion

$$\mu c_{n+1} \sqrt{n+1} + \nu c_{n-1} \sqrt{n} = 0 \quad (n \geq 0) \quad (29)$$

with $c_{-1} \equiv 0$. Setting $n = 0$ yields $c_1 = 0$, and (29) then implies $c_{2n+1} = 0$ for all n : only even photon numbers appear.

For even coefficients, set $n = 2k+1$ in (29) to obtain

$$c_{2k+2} = -\frac{\nu}{\mu} \sqrt{\frac{2k+1}{2k+2}} c_{2k} \quad (30)$$

Iterating (30) gives

$$c_{2n} = c_0 \left(-\frac{\nu}{\mu} \right)^n \frac{\sqrt{(2n)!}}{2^n n!} = c_0 (-e^{i\theta} \tanh r)^n \frac{\sqrt{(2n)!}}{2^n n!} \quad (31)$$

Normalization fixes c_0 . Using the identity

$$\sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2} x^n = \frac{1}{\sqrt{1-x}}, \quad |x| < 1 \quad (32)$$

with $x = \tanh^2 r$, one finds $\sum_{n \geq 0} |c_{2n}|^2 = 1$ implies $|c_0|^2 = 1/\cosh r$. Choosing $c_0 > 0$, the squeezed-vacuum superposition is

$$|0; \zeta\rangle = \frac{1}{\sqrt{\cosh r}} \sum_{n=0}^{\infty} \frac{\sqrt{(2n)!}}{2^n n!} (-e^{i\theta} \tanh r)^n |2n\rangle \quad (33)$$

7 Energy And Truncation Considerations

The Fock-basis expansions derived above are *infinite* superpositions. Physically, the relevant resource is the field energy, which for a single mode is proportional to the photon number,

$$H = \hbar\omega \left(a^\dagger a + \frac{1}{2} \right) = \hbar\omega \left(n + \frac{1}{2} \right) \quad (34)$$

so that the mean energy is set by the mean photon number,

$$\langle H \rangle = \hbar\omega \left(\langle n \rangle + \frac{1}{2} \right) \quad (35)$$

An infinite superposition in the Fock basis does *not* automatically imply infinite energy: coherent states and squeezed vacuum states have exponentially suppressed tails in n and remain normalizable with finite $\langle n \rangle$ (e.g. $\langle n \rangle = |\alpha|^2$ for $|\alpha\rangle$ and $\langle n \rangle = \sinh^2 r$ for $|0; \zeta\rangle$). However, any *exact* realization of these ideal states would require perfect unitary control and, in principle, access to arbitrarily high photon-number components, even if their probabilities are small. In practice, source imperfections, losses, detector dynamic range, and circuit nonlinearities impose an effective photon-number cutoff [4].

This motivates the common modeling step of *Hilbert-space truncation*: one chooses a cut-off N_{cut} and replaces the ideal state by its projection onto the finite subspace $\text{span}\{|0\rangle, \dots, |N_{\text{cut}}\rangle\}$,

$$|\psi\rangle \mapsto |\psi\rangle_{\text{cut}} = \frac{P_{N_{\text{cut}}}|\psi\rangle}{\sqrt{\langle\psi|P_{N_{\text{cut}}}|\psi\rangle}}, \quad P_{N_{\text{cut}}} = \sum_{n=0}^{N_{\text{cut}}} |n\rangle\langle n| \quad (36)$$

The truncation error is conveniently quantified by the *tail probability*

$$\epsilon_{\text{tail}}(N_{\text{cut}}) = 1 - \langle\psi|P_{N_{\text{cut}}}|\psi\rangle = \sum_{n>N_{\text{cut}}} |\langle n|\psi\rangle|^2 \quad (37)$$

which directly measures how much probability is discarded. A small ϵ_{tail} is necessary for accurate numerical simulation, but it is also a physical design metric: optical components and detectors must operate reliably over the photon-number range that carries non-negligible weight for the intended α or r .

8 Conclusion and Outlook.

This primer showed how two central classes of single-mode optical states arise directly from their generator forms. For coherent light, the displacement operator can be factorized using a simple BCH identity (made possible because the relevant commutator is a *c*-number), and acting on the vacuum immediately produces the familiar Poisson-weighted Fock superposition. For squeezed vacuum, the Hadamard lemma shows that conjugation by the quadratic generator closes on the a, a^\dagger operator subspace, and the adjoint Taylor series sums to $\cosh(r)$ and $\sinh(r)$. The resulting linear transformation implies a vacuum condition that yields a simple Fock-basis recursion and the even-photon expansion. Beyond providing explicit expansions useful for calculations and intuition, these derivations highlight a recurring theme in quantum optics [3]: when commutators close on a small operator algebra, exponential generators become tractable and lead to compact, physically transparent results.

References

- [1] C M Caves. Quantum-mechanical noise in an interferometer. *Phys. Rev. D*, 23(8):1693–1708, April 1981.
- [2] M Scully and M S Zubairy. *Quantum optics*. Cambridge University Press, 1997.
- [3] C C Gerry and P L Knight. *Introductory quantum optics*. Cambridge University Press, Cambridge, England, 3 edition, January 2024.
- [4] D F Walls and G J Milburn. *Quantum Optics*. Springer Nature Switzerland, 2 edition, 2008.
- [5] D R Truax. Baker-campbell-hausdorff relations and unitarity of $SU(2)$ and $SU(1,1)$ squeeze operators. *Phys. Rev. D Part. Fields*, 31(8):1988–1991, 1985.