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1 Introduction

Two of the most important single-mode optical states are (i) coherent states, which model
ideal laser light as a displaced vacuum with a well-de�ned complex �eld amplitude, and
(ii) squeezed vacuum states, which redistribute quantum �uctuations between conjugate
quadratures while remaining minimum-uncertainty states with applications for example in
interferometric noise reduction [1]. Both optical states are produced by simple exponentiated
generators. This short primer shows, using only commutators and Taylor expansions, how the
generator forms of the displacement and squeezing operators lead to explicit superpositions
in the Fock (photon-number) basis [2].

2 Single-Mode Algebra

We consider one bosonic mode with annihilation (a) and creation (a†) operators satisfying
the canonical commutator relations (CCR)

[a, a†] = 1, [a, a] = [a†, a†] = 0 (1)

and a vacuum state |0⟩ de�ned by a|0⟩ = 0. The number states are

|n⟩ = (a†)n√
n!

|0⟩, n = 0, 1, 2, . . . (2)

with ladder relations

a|n⟩ =
√
n |n− 1⟩, a†|n⟩ =

√
n+ 1 |n+ 1⟩ (3)

We will use the product-rule commutator identity for operators

[A,BC] = [A,B]C +B[A,C] (4)

3 Baker-Campbell-Hausdor� (BCH) Factorization

If two operators A and B commute with [A,B] (equivalently: [A, [A,B]] = [B, [A,B]] = 0),
then

eA+B = eAeBe−
1
2
[A,B] (5)

a special case of the Baker�Campbell�Hausdor� theorem. (For more details on BCH and its
proof see the corresponding primer and [4, 5])
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4 Hadamard Lemma

The Hadamard lemma in adjoint form (see also BCH primer and [4, 5]) is

eGBe−G = eadGB =
∞∑
n=0

1

n!
adn

G(B), adG(B) ≡ [G,B] (6)

where
ad 0

G(B) = B

ad 1
G(B) = [G,B]

ad 2
G(B) = [G, [G,B]]

...

(7)

are nested commutators.

5 Coherent States From The Displacement Generator

The displacement operator is de�ned as [3]:

D(α) = exp
(
αa† − α∗a

)
, α ∈ C (8)

and the coherent state is the displaced vacuum

|α⟩ = D(α) |0⟩ (9)

Let A = αa† and B = −α∗a. Using

[A,B] = [αa†,−α∗a] = −|α|2[a†, a] = |α|2 (10)

which is a c-number and therefore trivially commutes with both A and B. We evaluate the
operator exponential with the BCH formula (eqn. 5) and obtain the standard factorization

D(α) = e−|α|2/2 eαa
†
e−α∗a (11)

For completeness and use in later primers we compute D†a†D from the Hadamard lemma
(4). First we identify G as the adjoint of the exponent of the displacement operator D:

G = (α a† − α∗ a)† = α∗ a− α a† (12)

and evaluating the nested commutators we obtain

ad 0
G(a

†) = a†

ad 1
G(a

†) = [G, a†]

= [α∗ a− α a†, a†]

= α∗

ad 2
G(a

†) = 0

(13)

where the last equation follows uses that any operator commutes with a number. Since only
the �rst two terms remain, we obtain the compact �nal relationship:

D†a†D = a† + α∗ (14)
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5.1 Act On The Vacuum And Taylor Expand

Since a|0⟩ = 0, every positive power of a annihilates the vacuum, so

e−α∗a|0⟩ =
∞∑

m=0

(−α∗)m

m!
am|0⟩ = |0⟩ (15)

Applying (11) then gives

|α⟩ = e−|α|2/2 eαa
†|0⟩ = e−|α|2/2

∞∑
n=0

αn

n!
(a†)n|0⟩ (16)

Using (a†)n|0⟩ =
√
n! |n⟩ yields the Fock-basis superposition

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ (17)

6 Squeezed Vacuum From The Squeezing Generator

The single-mode squeezing operator is de�ned by

S(ζ) = exp

[
1

2

(
ζ∗a2 − ζ(a†)2

)]
, ζ ∈ C (18)

and the squeezed vacuum is

|0; ζ⟩ = S(ζ) |0⟩, a|0⟩ = 0 (19)

We parameterize ζ in polar form

ζ = reiθ, r ≥ 0, θ ∈ R (20)

6.1 Adjoint-Exponential (Hadamard Lemma) And Closed Algebra

Let

G ≡ 1

2

(
ζ∗a2 − ζ(a†)2

)
, S(ζ) = eG (21)

Using the Hadamard lemma (section 4) we compute the action of S(ζ) on the ladder
operators. From the CCR (eq. 1) we �nd

[G, a] = ζ a†, [G, a†] = ζ∗a (22)

Repeated commutators alternate between a and a†:

ad2n
G (a) = |ζ|2na, ad2n+1

G (a) = |ζ|2nζ a† (23)
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with |ζ| = r. Substituting (23) into (6) yields

S(ζ) aS†(ζ) =
∞∑
n=0

r2n

(2n)!
a+

∞∑
n=0

r2n

(2n+ 1)!
ζ a†

= a cosh r +
ζ

r
a† sinh r = a cosh r + eiθa† sinh r (24)

De�ne
b ≡ S(ζ) aS†(ζ) = µa+ νa†, µ = cosh r, ν = eiθ sinh r (25)

so that ν/µ = eiθ tanh r. Eqn. 25 is also called Bogoliubov (linear canonical) transformation
of mode operators.

6.2 Vacuum Condition And Fock-Basis Recursion

Because |0; ζ⟩ = S(ζ)|0⟩ and a|0⟩ = 0, we have

b |0; ζ⟩ = S(ζ) aS†(ζ)S(ζ)|0⟩ = S(ζ) a |0⟩ = 0 (26)

Equivalently,
(µa+ νa†) |0; ζ⟩ = 0 (27)

Expand the state in the number basis,

|0; ζ⟩ =
∞∑
n=0

cn|n⟩ (28)

Using a|n⟩ =
√
n |n − 1⟩ and a†|n⟩ =

√
n+ 1 |n + 1⟩ in (27), then collecting coe�cients of

|n⟩, gives the recursion
µ cn+1

√
n+ 1 + ν cn−1

√
n = 0 (n ≥ 0) (29)

with c−1 ≡ 0. Setting n = 0 yields c1 = 0, and (29) then implies c2n+1 = 0 for all n: only
even photon numbers appear.

For even coe�cients, set n = 2k + 1 in (29) to obtain

c2k+2 = −ν
µ

√
2k + 1

2k + 2
c2k (30)

Iterating (30) gives

c2n = c0

(
−ν
µ

)n
√

(2n)!

2n n!
= c0

(
− eiθ tanh r

)n√(2n)!

2n n!
(31)

Normalization �xes c0. Using the identity
∞∑
n=0

(2n)!

22n(n!)2
xn =

1√
1− x

, |x| < 1 (32)

with x = tanh2 r, one �nds
∑

n≥0 |c2n|2 = 1 implies |c0|2 = 1/ cosh r. Choosing c0 > 0, the
squeezed-vacuum superposition is

|0; ζ⟩ = 1√
cosh r

∞∑
n=0

√
(2n)!

2n n!

(
− eiθ tanh r

)n |2n⟩ (33)
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7 Energy And Truncation Considerations

The Fock-basis expansions derived above are in�nite superpositions. Physically, the relevant
resource is the �eld energy, which for a single mode is proportional to the photon number,

H = ℏω
(
a†a+

1

2

)
= ℏω

(
n+

1

2

)
(34)

so that the mean energy is set by the mean photon number,

⟨H⟩ = ℏω
(
⟨n⟩+ 1

2

)
(35)

An in�nite superposition in the Fock basis does not automatically imply in�nite energy:
coherent states and squeezed vacuum states have exponentially suppressed tails in n and
remain normalizable with �nite ⟨n⟩ (e.g. ⟨n⟩ = |α|2 for |α⟩ and ⟨n⟩ = sinh2 r for |0; ζ⟩).
However, any exact realization of these ideal states would require perfect unitary control and,
in principle, access to arbitrarily high photon-number components, even if their probabilities
are small. In practice, source imperfections, losses, detector dynamic range, and circuit
nonlinearities impose an e�ective photon-number cuto� [4].

This motivates the common modeling step of Hilbert-space truncation: one chooses a cut-
o�Ncut and replaces the ideal state by its projection onto the �nite subspace span{|0⟩, . . . , |Ncut⟩},

|ψ⟩ 7→ |ψ⟩cut =
PNcut|ψ⟩√
⟨ψ|PNcut|ψ⟩

, PNcut =
Ncut∑
n=0

|n⟩⟨n| (36)

The truncation error is conveniently quanti�ed by the tail probability

ϵtail(Ncut) = 1− ⟨ψ|PNcut|ψ⟩ =
∑

n>Ncut

|⟨n|ψ⟩|2 (37)

which directly measures how much probability is discarded. A small ϵtail is necessary for
accurate numerical simulation, but it is also a physical design metric: optical components
and detectors must operate reliably over the photon-number range that carries non-negligible
weight for the intended α or r.

8 Conclusion and Outlook.

This primer showed how two central classes of single-mode optical states arise directly from
their generator forms. For coherent light, the displacement operator can be factorized using
a simple BCH identity (made possible because the relevant commutator is a c-number), and
acting on the vacuum immediately produces the familiar Poisson-weighted Fock superposi-
tion. For squeezed vacuum, the Hadamard lemma shows that conjugation by the quadratic
generator closes on the a, a† operator subspace, and the adjoint Taylor series sums to cosh(r)
and sinh(r). The resulting linear transformation implies a vacuum condition that yields a
simple Fock-basis recursion and the even-photon expansion. Beyond providing explicit ex-
pansions useful for calculations and intuition, these derivations highlight a recurring theme
in quantum optics [3]: when commutators close on a small operator algebra, exponential
generators become tractable and lead to compact, physically transparent results.
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