Chapter 10: Quantum Subsystems and Properties of Entangled States

Overview

In this section, we will investigate quantum subsystems, entangled states, their characterization, and provide the groundwork for error correction codes

Learning Objectives

By the end of this section, you should be able to:

- 1. Describe the difference between superposition, pure and mixed states.
- 2. Distinguish density matrices for pure and mixed states.
- 3. Describe the concept of superoperators in the context of entanglement.

Chapter 10: Quantum Subsystems and Entangled States.

Polver of Quantum Computing:

• m-qubits -> 2 states

m=50 -> ~ 1015 states

foogle 2019: 53-qubits:

(104 years -> 3m22s)

measurement: only can measure m states Limited probus of state space.

· Entanglement necessary for exponential speed-up. Josza & Linden, 2003)

Entanglement generally poorly understood, especially for large in (many qubits).

=> Queshonis: (chapter 10)

e How to characterize entanglement?

Interaction of subsystems.

(Computing

decoherence la error.

Review entangled States:

$$= \frac{1}{\sqrt{2}} (a_1 | o > + b_1 | b >) \otimes \frac{1}{\sqrt{2}} (a_2 | o > + b_2 | i >)$$

$$= \frac{1}{2} \left(a_1 a_2 | 60) + a_1 b_2 | 01 \rangle + b_1 a_2 | 10 \rangle + b_1 b_2 | 11 \rangle \right)$$

Consequences:

EPR - pavadox: (Einstein et al. 1935)

Alice: 1st qubit

Bob: 2nd qubit

14>= 1 (100>+111>)

Sepurate system:

Alice measures "0" - Bob: "0"

suggests; mistanteneous knowledge:

Einstein; Podolsky, Rosen: (1935)

Cannot be -> need other solution.

EPR: hidden variables.

Quantum Mechanici is hicomplete.

Bohr (1935) incorrect conclusion.

Bohr (1935)

in Correct Con Clasion. Bob can measure in any dinchen but {Â,B} = 0 => Bobé measurement will be un Certain probabilistic: Alice: S2: "0" m Bob: Sx: 50//50/ 50/50 only possible if Alice Sende direction through classical channel & C. => quantum meclanica is complete. Belle 1960ies + laber experiments. Confirm Bohr's argument. and con clusion:

=> no-cloning theorem. unknown quantum state cannot be cloned / copied wins any untary Operator. => tele portahou Alva 10> -linihal State (Alice qubit) deshoyed. only one person @ a time Can re-construct quantus states. The wavefundi of a state contains all possible knowledje about the system: It is complete.

-6-

Enterplement depends on de com position. 147= 1 (100> + 1117) & 6 = 1 (1000) + 1110) = (a, lo>+6, li>) (a, lo>+6, li>) (a3 lo>) a, 92 (3 1000) + a, b, a 1010) + b, a2a3 + entergled state is enterfled with to 1- gubit computational basis. In general:

=> most states are entargled

=> Chance for quantum

computing to Show exponential

Speed-up (Josza & Linden, 2003)

Characterizing entangled states:

superposition: $|\psi\rangle = a_1|0\rangle + b_1|1\rangle$

Chapter (1=4); forms basis of

quantum mechenics.

pune shetes: (chapters

1-9)

will defined states:

V= V, & V& --- & Vn

all single elements of

tensor product space.

does not mean luique wit.

measurement.

ie know all conficints of all

States that occur.

14>= [(00>+110))

il a pun state. portos por montos mon

Byten meaturet: hell-debod!

| Photon > = 10> = 1 (+)+ (v) afte maint: 50% (H) } onta much. Wixed states: d states:

surply a set of pure states: Usually this implies some Un certainty about the System. /4>= /quantim > (8) /environment > decoherme.

Chapter 11.

-9-

Measure ment:

Nillen & Chuay (chapter 2)

Ouante medanics, postulate:

Collectuon of measurement operators:

2 mm 3

measurement hidex

Before measurement: 145

=> probability to measure mi

p(m)=< 4/ Mm Mm/4> EIR

and Shake after measurement is

Completeness;

 $\begin{bmatrix} \hat{M}_{m}^{\dagger} \hat{M}_{m} = 1 \\ p \ell_{m} \end{bmatrix} = 1$

$$p(m) = \langle 4|\hat{P}_m|4\rangle$$

$$|4\rangle = \frac{\hat{P}_m|4\rangle}{Vp(m)}$$

$$\frac{\hat{p}_{m}}{\hat{p}_{m}} = \hat{p}_{m} \left(\hat{p}_{m} \left(+ \right) \right) = \hat{p}_{m}^{2} \left(+ \right)$$

use ful grantity [m] ale possible outainer = $1 \times [m] \times [m]$ reflects that we have a Complete knowledge of ale possible ont comesa and in general: as in levieur alphra: main's version of operators; A: aj = <i/1/1/>